Study and Analysis of Different Gabor Filters for Image Enhancement and Segmentation
نویسندگان
چکیده
The main objective of the super resolution images is to enhance the quality of the multiple lower resolution images. Super Resolution image is constructed by using raw images. An Image with improved resolution is always desirable for various applications like satellite, medical etc. to enhance the qualitative features are the images. In this paper, Super Resolution Image Reconstruction (SRIR) is proposed for improving the resolution of lower resolution images. Proposed approach is described as follows. Initially, Some low resolution images of same scene which are usually translated, rotated and blurred are used to form a super resolution image. Then, the image registration operation apply alignment in the similar way to that of source image. Next, Lifting Wavelet Transform (LWT) with Daubechies4 coefficients are applied to color components of each image due to its less memory allocation compared to other wavelet techniques. Further, Set Portioning in Hierarchical Trees (SPIHT) technique is applied for image compression as it possess lossless compression, fast encoding/decoding, and adaptive nature. The three low resolution images are fused by spatial image fusion method. The noise is removed by dual tree Discrete Wavelet Transform (DWT) and blurring is reduced by blind deconvolution. Next, various gabor filters are applied for image enhancement. Further, gabor feature are applied for image segmentation. Finally, the samples are interpolated to original samples to obtain a super resolution image. The structural similarity for each intermediate image is compared to the source image to observe high structural similarity by objective analysis..
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملThe Design of Multiple Gabor Filters for Segmenting Multiple Textures
Gabor filters have been successfully employed in texture segmentation problems, yet a general multi-filter multi-texture Gabor filter design procedure has not been offered. To this end, we first present a multichannel paradigm that provides a mathematical framework for the design of the filters. The paradigm establishes relationships between the predicted texture-segmentation error, the power s...
متن کامل